

Multi-sensor monitoring of small water bodies volume in West Africa

Fixed contract (APR CNES): Oct. 2021 - Sept. 2022 Félix Girard, Mathilde de Fleury, Manuela Grippa, Laurent Kergoat (GET, Toulouse)

Context

Study area

Arid to semi-arid climate Rainfall: 200-600mm/year High seasonality

Credits: Google

Introduction

Material and methods

Results

Context

Arid to semi-arid climate Rainfall: 200-600mm/year High seasonality

Longitude (°)

Scientific context

AMMA-CATCH observatory

Introduction

Material and methods

Credits: Google

Results

Conclusion

Context

Λ

Arid to semi-arid climate Rainfall: 200-600mm/year **High seasonality**

Scientific context

SWOT mission (Nov. 2022) : Dense observation of surface waters

AMMA-CATCH observatory

en Afrique de l'Ouest

Objectives

- Build a reference database of \succ lakes (heights, areas, hypsometric curves) for SWOT data validation
- Develop new methods for lake \succ volume variations monitoring
- Investigate the Sahelian \succ hydrological changes over the past three decades (future PhD)

Introduction

Material and methods

Credits: Google

Results

5

Introduction

Material and methods

Results

Hypsometric curve

Introduction

Material and methods

Results

Comparison with Pléiades DEM

Acquisition when lake is driest

Credits: Airbus DS

Resolution: 0.5m x 0.5m

	n	tκ	-	~		0		0	n
						•		. 1	
			S	u	ч	S	LI	J	
1			_	_	_	_		_	

Material and methods

Results

Comparison with Pléiades DEM

Introduction

Material and methods

Results

Comparison with Pléiades DEM

Resolution: 0.5m x 0.5m

Introduction

Material and methods

Results

- Water areas and lake contours by MNDWI thresholding on Sentinel-2 images
- Water levels by crossovers computation of lake contours with ICESat-2 tracks
- Construction of hypsometric curve

- 1	n	r	\sim	~		0		0	n
- 1				(1					
			\sim	S	ч	S	•	0	

- Water areas and lake contours by MNDWI thresholding on Sentinel-2 images
- Water levels by crossovers computation of lake contours with ICESat-2 tracks
- Construction of hypsometric curve

Ongoing quality assessment

- Uncertainties on water detection (clouds, aquatic vegetation, dry lakes)
- Uncertainties and quantity of ICESat-2 elevation data (clouds, vegetation on banks, small lakes)
- > Few data for in-situ validation

5		10.	<u></u>	\sim		-		-	5	
			r 1					1		
		•	J	u	u		LI	J		
 	-	-	_	_	_	_		_		

- Water areas and lake contours by MNDWI thresholding on Sentinel-2 images
- Water levels by crossovers computation of lake contours with ICESat-2 tracks
- Construction of hypsometric curve

Ongoing quality assessment

- Uncertainties on water detection (clouds, aquatic vegetation, dry lakes)
- Uncertainties and quantity of ICESat-2 elevation data (clouds, vegetation on banks, small lakes)
- Few data for in-situ validation

Future goals

- Comparison of hypsometric curves with different methods and data sources
- Results valorisation:
 (Girard et al. in prep)
- Construction of the reference database for future comparisons with SWOT data

5	+ -	-	~		0	 -	5
		()	(1			 "	
		J	u	u	•	 J	
		-	-	-	-	 _	•••

Results

- Water areas and lake contours by MNDWI thresholding on Sentinel-2 images
- Water levels by crossovers computation of lake contours with ICESat-2 tracks
- Construction of hypsometric curve

Ongoing quality assessment

- Uncertainties on water detection (clouds, aquatic vegetation, dry lakes)
- Uncertainties and quantity of ICESat-2 elevation data (clouds, vegetation on banks, small lakes)
- Few data for in-situ validation

Future goals

- Comparison of hypsometric curves with different methods and data sources
- Results valorisation:
 (Girard et al. in prep)
- Construction of the reference database for future comparisons with SWOT data

PhD thesis starting Nov. 2022: Potential of SWOT for monitoring of small water bodies volume in West Africa

Thank you for listening!

felix.girard@get.omp.eu

